• Die Deutsche Gesellschaft für Biophysik e.V.
  • Die Deutsche Gesellschaft für Biophysik e.V.
  • Die Deutsche Gesellschaft für Biophysik e.V.
  • Die Deutsche Gesellschaft für Biophysik e.V.
  • Die Deutsche Gesellschaft für Biophysik e.V.
  • Die Deutsche Gesellschaft für Biophysik e.V.
  • Die Deutsche Gesellschaft für Biophysik e.V.
  • Die Deutsche Gesellschaft für Biophysik e.V.

PhD Position in Biophysical Chemistry

Applications are invited for a PhD position in the research group of Professor Karin Hauser at the University of Konstanz. The project is dedicated to study molecular interaction mechanisms with infrared spectroscopy. We established an ATR-FTIR spectroscopic approach to study aggregation pathways of polyglutamine (polyQ) proteins by the controlled initiation of the aggregation process facilitating the structural characterization of intermediates in dependence of time. Expanded glutamine repeats are found in many neurodegenerative diseases, but molecular mechanisms leading to disease-related aggregates or preventing aggregation are not well understood. Focus of the project is the further development of the infrared spectroscopic approach and the analysis of molecular interactions between polyQ repeats and chaperones. PolyQ aggregation kinetics and pathways shall be analyzed in the presence of chaperones to get insights into molecular mechanisms of chaperone function. Applications are invited for a PhD position in the research group of Professor Karin Hauser at the University of Konstanz. The project is dedicated to study molecular interaction mechanisms with infrared spectroscopy. We established an ATR-FTIR spectroscopic approach to study aggregation pathways of polyglutamine (polyQ) proteins by the controlled initiation of the aggregation process facilitating the structural characterization of intermediates in dependence of time. Expanded glutamine repeats are found in many neurodegenerative diseases, but molecular mechanisms leading to disease-related aggregates or preventing aggregation are not well understood. Focus of the project is the further development of the infrared spectroscopic approach and the analysis of molecular interactions between polyQ repeats and chaperones. PolyQ aggregation kinetics and pathways shall be analyzed in the presence of chaperones to get insights into molecular mechanisms of chaperone function.

We are looking for a highly motivated student who has successfully completed a master in (bio)chemistry, (bio)physics, life science or biology. The ideal candidate should have a strong interest in spectroscopy and biophysical research. Further requirements are the ability to work independently and in a team, as well as good English language proficiency.

The position is integrated in the Collaborative Research Center 969 “Chemical and Biological Principles of Cellular Proteostasis” (A2) and immediately available.Interested candidates should send their application (including motivation letter, CV, brief summary of master thesis, certificates) by e-mail to Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein! publications:
Yushchenko, T., Deuerling, E., Hauser, K. "Insights into the aggregation mechanism of polyQ proteins with different glutamine repeat lengths", Biophys. J., 2018, 114, 1847-1857
Krüger, A., Bürkle, A., Hauser, K.*, Mangerich, A.* "Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR spectroscopy", Nat. Commun 2020, 11, 2174

Further information: www.biophysik.uni-konstanz.de
Distributed: 1.12.2020